

Argovis: A Next Generation Platform for co-located Oceanic and Atmospheric Data to Accelerate Climate Science Workflows

Donata Giglio
Tyler Tucker, Megan Scanderbeg

Collaborators: Sam Shen, Julien Pierret, Lynne Talley, Gui Castelao, Sarah Purkey, Matt Mazloff, Aneesh Subramanian

URL: argovis.colorado.edu

Twitter: ArgovisWebApp, @ArgovisCU Contact: donata.giglio@colorado.edu

Outline

- What is Argovis?
- Argovis modules
 - Visualize Argo data by location and time
 - Co-locate Argo with weather events beta
 - Display and compare gridded products beta
- Argovis API: examples for BGC Argo
- Summary and future directions

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

Datasets available:

- Argo profiles*, curated set
- RG2009 climatology (in progress)
- Atmospheric Rivers
 Climatology by GW2015
 (in progress)
- Float trajectory forecasts by Chamberlain et al.

*http://doi.org/10.17882/42182

RG2009: Roemmich and Gilson, 2009

GW2015: Guan and Waliser, 2015

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

Datasets available:

- Argo profiles*, curated set
- RG2009 climatology (in progress)
- Atmospheric Rivers
 Climatology by GW2015
 (in progress)
- Float trajectory forecasts by Chamberlain et al.

Stay tuned for more gridded products (e.g. B-SOSE, SST, SSH, precipitation, winds, sea ice coverage, WOA18, ...), weather events (e.g. tropical cyclones), ...

Take a survey (on the website) and make your request!

*http://doi.org/10.17882/42182

RG2009: Roemmich and Gilson, 2009

GW2015: Guan and Waliser, 2015

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

Tucker, T., D. Giglio, M. Scanderbeg, and S.S. Shen, 2020: *Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data*. J. Atmos. Oceanic Technol., 37, 401–416, https://doi.org/10.1175/JTECH-D-19-0041.1

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

Some of the datasets
will not be stored in
Argovis, but accessed
through API (e.g.
from NASAEarthdata)

The **goal**: make it easy for anyone (both scientists and non-scientists) to visualize and access co-located datasets using a browser or not

Argovis Server (Back-end)

Outline

- ✓ What is Argovis?
- Argovis modules
 - Visualize Argo data by location and time
 - Co-locate Argo with weather events beta
 - Display and compare gridded products beta
- Argovis API: examples for BGC Argo
- Summary and future directions

Profiles globally: a 3-day window

Toggle to show/hide profiles in a 3-day window, globally.

Select end date for the 3-day window.

Toggle to show/hide profiles in a 3-day window, globally.

About Argovis Tut

Select end date for the 3-day window.

Visualize Argo profiles for a platform

Visualize Argo profiles for a platform

Visualize Argo profiles for a platform

Date

Visualize Argo profiles for a platform

Visualize Argo profiles for a platform

.json, .txt)

BGC platform page

Visualize Argo profiles for a platform

BGC platform page

ressure [d]

2016

2017

2020

This option is currently available for platform pages for Argo core variables (T, S, p). Note: separate pages for Argo core variables are available also for bgc floats as they include a selection criteria based on QC.

Coming up in the future:

- Option to change colorbar limits
- Option to plot overlayed profiles and temperature versus other parameters (e.g. TS diagrams)

Core Argo platform page

This option is currently available for platform pages for Argo core variables (T, S, p). Note: separate pages for Argo core variables are available also for bgc floats as they include a selection criteria based on QC.

Core Argo platform page

This option is currently available for platform pages for Argo core variables (T, S, p). Note: separate pages for Argo core variables are available also for bgc floats as they include a selection criteria based on QC.

The current platform page for core Argo will be upgraded to a similar format as the new bgc platform page.

Core Argo platform page

Disclaimer: profiles with Iridium (Positioning System GPS) plot only 200 points max.

Download data as JSON

To platform PT, PS To JCOMMOPS p To main page	100	ages								
Export table to	csv Export t	able to xls Exp	ort table to txt							
Link to GDA	Dac	Parameters	Positioning	Lat	Lon \$	Link to profi	Date rep	Cycle nu	Core Da	Num. of
5904684_1 data	aoml	psal, pres, temp	GPS	52.978 S	87.658 E	5904684_1 page	2016-02-28 21:58	1	D	496
5904684 10	aoml	psal. pres.	GPS	54.800 S	95.691 E	5904684 10	2016-06-05	10	D	496

Disclaimer: profiles with Iridium (Positioning System GPS) plot only 200 points max.

To main page										
Export table to csv	Export table to xls	Export table to txt								
Link to GDAC data	Dac	Parameters	Link to profile p	Date reported	Cycle number	Positioning s	Lat \$	Lon \$	Core Data M	Num. of meas.
3902399_14 data	bodc	temp, pres, psal	3902399_14 page	2020-03-25 20:53	14	ARGOS	24.746 S	25.490 W	R	100
3902169_23 data	aoml	pres, psal, temp	3902169_23 page	2020-03-25 20:10	23	GPS	0.069 S	38.418 W	R	1013
3902167_48 data	aoml	temp, pres	3902167_48 page	2020-03-25 19:04	48	GPS	0.137 S	42.142 W	R	1093
3901956_90 data	bodc	temp, pres	3901956_90 page	2020-03-25 17:56	90	GPS	9.634 S	23.420 W	R	556
5905981_53 data	aoml	psal, temp, pres	5905981_53 page	2020-03-25 08:39	53	GPS	28.337 S	41.955 W	Α	109
6902984_3 data	coriolis	pres, pres_qc, psal, psal qc. temp.	6902984_3 page	2020-03-25 07:03	3	GPS	0.005 S	22.974 W	R	957

Disclaimer: profiles with Iridium (Positioning System GPS) plot only 200 points max.

Download data as JSON

To main page					This	This table can be exported as csv, xls, tx					
Export table to csv	Export table to xls	Export table to txt							<u>'</u>		
Link to GDAC data	Dac	Parameters	Link to profile p	Date reported	Cycle number	Positioning s	Lat \$	Lon \$	Core Data M	Num. of meas.	
3902399_14 data	bodc	temp, pres, psal	3902399_14 page	2020-03-25 20:53	14	ARGOS	24.746 S	25.490 W	R	100	
3902169_23 data	aoml	pres, psal, temp	3902169_23 page	2020-03-25 20:10	23	GPS	0.069 S	38.418 W	R	1013	
3902167_48 data	aoml	temp, pres	3902167_48 page	2020-03-25 19:04	48	GPS	0.137 S	42.142 W	R	1093	
3901956_90 data	bodc	temp, pres	3901956_90 page	2020-03-25 17:56	90	GPS	9.634 S	23.420 W	R	556	
5905981_53 data	aoml	psal, temp, pres	5905981_53 page	2020-03-25 08:39	53	GPS	28.337 S	41.955 W	A	109	
6902984_3 data	coriolis	pres, pres_qc, psal, psal qc, temp.	6902984_3 page	2020-03-25 07:03	3	GPS	0.005 S	22.974 W	R	957	

Locate Argo profiles for a platform

Locate Argo profiles for a platform

Search platform #.

Co-locate Argo with weather events

Overlay profiles globally in a time window around the event time (i.e. select co-location strategy)

Display weather events (e.g. Atmospheric Rivers by GW2015) globally for the time of interest.

Display and compare gridded data

Display and compare gridded data

Display float trajectory forecast.

Outline

- ✓ What is Argovis?
- ✓ Argovis modules
 - ✓ Visualize Argo data by location and time
 - ✓ Co-locate Argo with weather events beta
 - ✓ Display and compare gridded products beta
- Argovis API: examples for BGC Argo
- Summary and future directions

Argovis is a web app and database

Example scripts are available on the website in Matlab, Python, R.

Argovis is a web app and database

Argovis Server (Back-end)

Let's see few examples...

Arg vis Profiles minus RG2009 climatology: example in Nino 3.4 region in January

Query BGC variables in a region

Query BGC variables in a region

Currently possible using Argovis API. Access and plot bgc platform data.

Region average from gridded product

RG2009: Roemmich and Gilson, 2009

B-SOSE: Verdy and Mazloff, 2017

Argovis

Argo Provide context for profile data. Also useful for B-SOSE validation.

The addition of B-SOSE to Argovis is in progress.

B-SOSE: Verdy and Mazloff, 2017

Where are Argo profiles with respect to sea ice?

Argovis: A Next Generation Platform for co-located Oceanic and Atmospheric Data to Accelerate Climate Science Workflows

Import data of interest in programming environment of choice through API.

For both scientists and non-scientists!

URL: argovis.colorado.edu

Twitter: ArgovisWebApp, @ArgovisCU Contact: donata.giglio@colorado.edu

Argovis: A Next Generation Platform for co-located Oceanic and Atmospheric Data to Accelerate Climate Science Workflows

Visualize Argo data by location and time

Co-locate Argo with weather events, satellite data, and more

Display and compare gridded data

Import data of interest in programming environment of choice through API.

For both scientists and non-scientists!

Stay tuned for more gridded products (e.g. B-SOSE, SST, SSH, precipitation, winds, sea ice coverage, WOA18, ...), weather events (e.g. tropical cyclones), ...

Take a survey and make your request!

URL: argovis.colorado.edu

Twitter: ArgovisWebApp, @ArgovisCU

Contact: donata.giglio@colorado.edu

